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Intramolecular Electron-Hole Transfer in Binuclear
Transition Metal Compounds-Theoretical Methods and
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A theoretical framework for intramolecular electron or hole migration is
developed starting from the convenient canonical molecular orbitals of an
ordinary Hartree-Fock (HF) calculation. The necessary unitary transforma-
tions from the canonical MO basis via localized orbitals to a transfer Fockian
are presented. A simple procedure for the consideration of relaxation and
correlation effects during the time evolution is developed. Computational
results for the hole migration between different metal 3d electron-hole pairs
in bis(7~pentadienyl)dinickel (1) are discussed. The contribution of the direct
transfer channel as well as the participation of ligand = and o channels in
the various propagation processes are analyzed.
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1. Introduction

Intramolecular electron transfer events have been the subject of various experi-
mental investigations and have been studied in bridged aromatic radicals [1, 2],
in conducting organic polymers [3] as well as in polynuclear transition metal
compounds. The most important examples in the organometallic field are mixed
valence species [4-7], biochemical systems with transition metal centers as active
sites (e.g. cytochromes) [8-10] and the transition metal derivatives that are able
to convert light energy photochemically into chemical energy [11, 12]. Quantum-
chemical procedures starting from first principles for the time evolution of the
electron transfer processes are sparse.
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In this contribution we try to develop a theoretical framework for the time
evolution of electron (hole) propagation in dimeric transition metal compounds
starting from convenient Hartree—Fock (HF) orbitals as one-particle basis; the
extension to other molecular arrangements is straightforward. The analysis is
restricted to the purely electronical aspects, vibrational coupling is not considered
in this investigation.

A detailed analysis based on time-dependent perturbation theory is given for
the binuclear 3d complex bis(7-pentadienyl)dinickel (1) [13], a molecule clear
enough that the various factors determining the transport properties can be
discriminated in detail. The NiNi separation (2.59 A) [14] lies in a range where
the electron or hole propagation between the two 3d centers should be influenced
both by the direct coupling and by the ensemble of available ligand transfer
channels.
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An investigation of the transport mechanisms in 1 seems of large interest in
consideration of the recent effort to understand the catalytic and conducting
properties of polynuclear organometallics [15].

The theoretical analysis is divided into different sections. In the following chapter
the fundamental equations and the necessary theoretical limitations are presen-
ted. Additionally current models for intramolecular electron (hole) propagation
are reviewed. In 3 the master equations for a hole transport in a dimeric system
are derived. The transformation steps connecting the diagonal canonical
molecular orbitals of an ordinary HF-ansatz with one-electron functions of a
transport-type Hamiltonian are discussed in the fourth part. Refinements of the
theory allowing the simulation of various conditions for the electron (hole)
propagation are explained in the subsequent paragraph. In Sects. 6-8 the theor-
etical procedure is applied to bis(7-pentadienyl)dinickel.

Computational framework for the HF calculations and the subsequent time-
dependent perturbational steps is a recently developed INDO-Hamiltonian [16]
for transition metal compounds designed to reproduce ab initio results of double-
zeta quality.

The theoretical and computational limitations presented in the following sections
prevent the calculation of intramolecular transfer rates with an accuracy and a
degree of sophistication that allows a direct comparison with experimentally
derived quantities. Nevertheless we feel that our model studies give insight into
the coupling mechanisms and interaction types between molecular fragments.
Furthermore this is the first time-dependent approach starting from the con-
venient canonical MOs and therefore allows the introduction of the well known
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static (time-independent) pictures of “through space” and ‘“through bond”
interaction [17].

2. Fundamental Equations and Review of Current Theoretical Approaches

The full Hamiltonian weakly coupled to a thermostat (e.g. low-frequency acous-
tical vibrations of the molecule or black body radiation) is given in Eq. (1)

H=H31+HV+H31_V+HVT+HT. (1)

The individual componentsof H are defined by means of creation and destruction
operators expressed in the representation of secondary quantization; a; and g,
are associated to the ith one-electron state while 47 and b; represent the
creation-annihilation pair of the Ith molecular vibration.

Hy is the Hamiltonian of the thermostat and H,t the Hamiltonian of the
interaction molecule-thermostat. Hy and H,r are responsible for energy dis-
sipation during the transfer process and are not considered in the present
investigation.

H, symbolizes the vibrational Hamiltonian and H,,., stands for the coupling
between the one-electron states / and the molecular vibration I (electron-phonon
interaction of the Frohlich type) [18].

H, =Y for (b7 by +2) 2)
He1-v=ZEI:guhwzai+ai(b? +br). 3)

The influence of H, and H.,,, upon electron transfer phenomena depends on
the relative timescale of the transfer process. If the electronical relaxation is
faster than 10~ sec (the shortest vibrational period in organic and organometal-
lic systems) the probability of electron (hole) propagation is independent of H,
and H,.,. On the other hand dissipation times of instationary electron (hole)
states exceeding this limit are strongly coupled to vibronic motions. The influence
of H, and H,,_, on electronic transfer events is not studied quantitatively in the
present approach.

The electronic Hamiltonian H., is defined in (4):
Ha=YY hiiafa,-+%ZZ§§[Jsza?a7akaz @)
L7 [

h; stands for the one-electron contribution in Hy and Vj;, symbolizes the
two-electron part; both quantities are defined in (5) and (6) where {¢;} is any
complete set of one-electron functions (orbitals)

ki = (@i(D|—3V2 + hlg; (1)) (5)

1
Vi = (D) = ex D). ©®)
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Making use of the Mgiller—Plesset theorem [19] (4) can be rearranged into (7)
where the twofold summation i, j corresponds to the Hartree-Fock (HF) operator
F*°in the AO representation ({¢;} symbolizes the AO basis)

H,=Y}) [hif + Uij]a;raj XX Uija?aj
i i

+2LLYT Viwai o] aua (7

rJ

Ui = 121 (Viljl - Viuj) (8)

FA° =YY [hy+v;lai a. 9)
i

Diagonalization of F* results in the stationary delocalized canonical molecular
orbitals (CMOs) where {A;} represents the CMO basis

FCMO=Z€ia;—ai. (10)

i

H., therefore can be expressed by means of (11) and (12):

HeleCMO+%ZZ§ZI V,-,-k,afa;’aka, (11)

i

H,=H,+HS® (12)

Hy =FM° (13)

HIeleB =% _ Z%ZIZ ‘/iikla?-a;—akal- (14)
i

HY® goes beyond the quasiparticle picture of F MO taking into account many
body interactions. The groundstate associated to F MO g symbolized by |bo),
the exact groundstate is given by |o). The groundstate determinant |¢o) can be
formulated by means of any set of one-electron states {¢;} or {A;} (CMOs) and
does not depend on a concrete set of orbitals

lo)=(ND) @1 (D)ea(2) - - + on (V)] (15)
lpo)=(NDVH A (DAL - ANV (16)

The molecular system determined by |#o) ((15) or (16)) is completely described
by the Hilbert space L} mounted on any set of one-electron functions [20].

To study the time-dependency of electron or hole propagation one has to solve
one of the Egs. (17)-(19) with a properly chosen instationary, non-diagonal basis:

Flol) = ih= |olo) 17)

Heluol0) = i o(0) (18)
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Haa o)D)= th o O)) (19)

Hel,al-v = el + Hv + Hel—v- (20)

Our investigations predominantly concern the time evolution formulated in (17)
and (18). As the canonical MOs are no suitable choice for (17) or (18) the
theoretical key step lies in the development of a unitary matrix M transforming
the {A;} set into a MO basis for a non-diagonal transport-type Fockian. If we
are interested in the electron (hole) propagation from one localized, instationary
state p; to a second localized, instationary state p; in the time period Af, the
following expressions for the HF determinant |¢o(¢)) and for the Hilbert space
LY (¢) represent the suitable choice for time-dependent perturbation theory

lbo(1)) = Alp;(1, p;(2, )¥1(3) * * - Yiv-2(N)} (21)
LY () =L()+ L) +L? (22)

A is the antisymmetrization operator and y represents a time-independent
stationary one-electron basis belonging to a (N —2) dimensional subspace. L;(¢)
and L;(¢) symbolize the time-dependent Hilbert spaces mounted to the evoluting
states p;(¢) and p;(¢) while L2 is connected to the (N —2) time-independent
one-particle functions y, (messenger or transmitter orbitals).

None of the existing intramolecular electron (hole) transport theories is designed
from first principles (e.g. HF SCF level) leading to an orbital representation
suitable for the time evolution according to (21) and the Hilbert space relation
(22). Current transfer theories can be classified into three categories (I, II,
and III).

(I) The phenomenological tunnel electron transfer (TET) concept is based on
the quasiclassical electron motion between two potential wells and has been
developed for biological systems [8, 21]. In actual calculations the model para-
meters of the TET procedure are not calculated theoretically but they are
determined by trial and error procedures to fit experimental data [21].

(IT) Theoretical methods belonging to class II for the intramolecular electron
(hole) transport are purely vibrational approaches where the electronic tunnel
integral enters the working equations only parametrically as constant factor.
These concepts have their origin in the classical Forster-Dexter equations [22]
or are adopted from intermolecular transport theories [23-26]. The common
drawback of the vibrational theories lies in the fact that they give no insight into
electronical changes during the transfer process. They can be applied only in
the time interval >10""°~107"* sec where the electron (hole) migration is strongly
influenced by H, and H.,, [27, 28].

(III) The third class of intramolecular electron transfer theories is based on the
non-diagonal transport-type Hubbard-Hamiltonian [29] Eq. (23) with on-site
Coulomb integrals y; and inter-site one-electron coupling elements 8;

B .
Huu= Y LY By(aitjs+ajeai,) + L Vifliais (23)

o=a i |
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Rig = a?t—xaia
Rig = a;';;aig (24)
o =spin variable « or 8.

The Hubbard operator has been used in theoretical transfer studies in simple
model systems [30].

The analytical structure of Hyy provides a suitable choice for a transport Fockian
developed from the HF SCF level avoiding the approximative character of the
Hubbard Hamiltonian.

Egs. (10), (21), (22), and (23) suggest the following structure of the desired
Fockian FH7:

+ oce 4
£a; a;+ Y Exlrak
i k=1
k#ij

FHT —

I =~

j occ
+X kZ (eii Ak + €1i ;). (25)
i=i k=1
l 'k?ﬁi
In (25) it is assumed that the hole propagation takes place between the ith and
jth (donor state) localized instationary states, e.g. in the case of the Ni complex
1: electron (hole) transfer between the transition metal centers.

A matrix representation of F*' is displayed below.

pHT

Scheme 1

i and j are the MO indices for the two localized one-electron functions p; and
p; that take part in the transfer process. The diagonal elements ¢; and &; are
associated to the localized domains; &, (k # I, ) represent one-electron energies
of the remaining (N —2) orbitals. Each electron in the k set experiences the
potential of (N —3) electrons due to the ordinary HF averaging procedure and
due to the decoupling of p; and p;. The life-times within the (N —2) dimensional
v« subset of course is infinite. The interaction between p;|p; and y; is given by
means of the cross-elements e, |e;; £; obviously describes the direct coupling
between the electron-hole pair. If a unitary transformation between (10) and
(25) can be formulated, ¢;, &, and &; contain kinetic energy, electron-core and
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averaged electron-electron interaction within the HF picture and the coupling
between the one-electron states is not of the phenomenological Hubbard type
but related to standard LCAO procedures. Simplified versions of (25) have been
formulated by various authors [31-33].

It is now straightforward to formulate the basis equations for time-dependent
perturbation theory if once F™© has been transformed into F™"

FT=F3T +Fp (26)
aT ¢ + ey +
Fp =_Z'8iaiai+ Y Exdray 27
= bty
i occ
Fp = Z kzl (ewai ax + enar a;). (28)
i=ik=
ki

The time-independent determinantal wave function derived from (21) is given
by (29) with the mixed {p;, .} MO basis.

lpo)™ = (ND) ?|0:(Dp;(2)71(3) - - * Yv (N (29)

In the following {p;, v«} are collected into a common symbol {v;}. By means of
the Dirac variation of constants [34] the time-dependent wave function developed
from the {y;} basis is obtained by the expansion (30) where the coefficients a;(¢)
have to be determined via Eq. (31)

() =% a:i(t)y: (30)

., 0
(Fp' +Fip)ln@) =ih—{n(@®)  k=1,2,...,N. (31)

The a;(t) amplitudes are related to the time-independent a;(0) set (t = 0) due to
the evolution operator U [35, 36]

a;(t)= E Uja;(0). (32)

The probability for finding the initially prepared electron (hole) state in v;(= p;)
at the time 7 is given in (33)

Pi(1)=|a:(r)? (33)
B0 =af (0a,(1)= (3 Uya(0)) (X Unax 0))
=S |UiP0)+ 33 UjUsai 0 0). (34)

In the framework of the random approximation (RPA) Pi(t) is given by the
simplified expression (35)
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The probability of electron (hole) propagation within the one-electron pair p;, p;
therefore is given by (36)

Si(6)=UyP. (36)

The investigation of the time evolution of (25)/(26) with the Hilbert relation
(22) is traced back to the determination of Uy for the instationary electron-hole

pair pi|p;.

3. The Time Evolution of the Transport Type Fockian F*"

According to Eq. (26) for F HT the product-form (37) is used for the evolution
operator

U= UD ‘ UND~ (37)

Up is associated to the diagonal Fockian Fi' and Uxp corresponds to the
perturbational operator F mp. Unp is developed in the interaction represent-
ation [36] by means of Eq. (38) forming the basis equation of time-dependent
perturbation theory [35]

o i n oat ¢ t'(n—-1)
Uxp= Y (_E> J dtj dt'---J. dr v
n=0 0 0 0

X FNb (1) - Fp () -+ Fap (" 7). (38)
FRp (1) is determined by means of the transformation (39),
Fxp ()= UpFxpUp =exp (Fp fiH)FND exp (—iF 5 |h) (39)
Up =exp (iFp t|h). (40)
The matrix element Uj; in the one-electron basis (29) is given in (41)
{p:| Ulp;) = exp (~ieit|){p;| Unplp;). 41

The probability of electron (hole) propagation between p;|p; therefore is deter-
mined by (42)

S;(t)= I(Pil UND‘Pi)lz- (42)

To solve (38) one has to evaluate the matrix elements of Fap (¢) in the interaction
representation in analogy to the Uj; elements (Eq. (41}))

<PilF§]§ (Dlp;) = exp (iwiil‘)(PilFE[T) los). (43)
w;; is the Bohr frequency between the ith and jth diagonal element of F Br
wij = (Si - Ej)'h. (44)

In the case of the electron (hole) propagation Uyp(0) satisfies the (initial)
condition Unp(0) =0 due to the preparation of the electron (hole) state in p; at
t=0.
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The probability of hole propagation is related to the iterative expansion of Eq.
(38); up to second order the following relation for {p;|Unplp;) is observed

t

(ol Unploy = (1) f dt exp (iwy)ey

1 =2 occ ¢ ¢
- (l_h) kgl ‘[) dt J.O dl’ €Xp (icuikt) €Xp (iwk,-t)s,-ke,-k. (45)
k#i,f

The restriction of the indices (j, k) is a result of the choice of the one-electron
basis according to Eq. (29); the direct transfer channel is given by the first
expression of (45), the k indirect propagation paths are determined by the second
summation. According to the theoretical framework of R. Hoffmann and co-
workers the coupling via ¢ is called “through space” interaction [17] while the
second order contributions with cross products e;.&,; corresponds to the “through
bond” interaction [17]. In the case of intramolecular electron (hole) propagation
therefore the first order contribution to (45) can be assigned to a ‘“through
space” transfer channel while the indirect channels can be classified as ““through
bond” transfer.

The precise analytical form of the probability of hole propagation S;;(¢} depends
on possible resonance conditions between the one-electron states. In Fig. 1 the
various possibilities are displayed. In A p;, p; as well as the messenger states(s)
are degenerate, in B only the evoluting states have a vanishing Bohr frequency.
In C and D a resonance condition between v, and one of the time-dependent
states (p; or p;) is encountered while resonance conditions are absent in E.

The direct contribution to the probability of hole propagation in the case of a
degeneracy between p; and p; is given in (46) and (47)

(o:| Unplp)e= (ih) eyt (46)
1 2
Sy = (—h-) 62 @7)

RC =resonance condition.

In the case of the indirect second order channels A and B must be distinguished.
The transfer quantities {p;|Unplp;)rc.rc and S$ (f)rcre are defined in (48)
and (49)

1/1\?
(Pi'UND|Pj>g)c,Rc=E<E) eikek,-tz (48)
) 1/1 * 2 2.4
S (t)RC,Rczz(% EikExit - (49)

The second index in (48) and (49) remembers to the resonance condition (RC)
for the direct coupling. The expressions for case B are determined by means
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loc deloc loc
€i= Ek
é — em— — gizgi
Ei=€k
]
Ei=€j
i —— - i} EL
€i¢€k
— Ei:tSi
; — [ ] Ei:gk
ei:FEk
Eit €j
D i,
€i=€k
I
E o Ei €k g
A
€ €k €j

Fig. 1. Various possibilities for resonance conditions between the instationary, localized electron-hole
pair p;/p; and the diagonalized orbitals v, coupled to p; and p;

of (50)-(52).
<Pi| UND'P;‘)SE{C,RC = (l.lh)zsikgkj(%ki)
X [J;: dt' — Lt dt' exp (iw,-kt)] (50)

(resonance between g; and ;)
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<Pil UNDIPj)%{C,RC = ( ) SikEkj(iwki)

R
x [t—(i) exp (iw,-kt)+(iciik>] (51)
Sii(t)gl)QC,RC = (%ﬁ)zgz‘zke ii(wki)z{ £+ z(wi]_k)z
X[1—cos (wjxt) —(wp)t - sin (wikt)]} (52)

NRC = non resonance condition.

Egs. (47), (48) and (52) can be combined to the net probability of electron (hole)
propagation (53) with a resonant direct transfer channel and resonant and non
resonant indirect transfer paths

Sii(Dtot,rcy = Sij(t)gll(): + Sij(t)g()Z,RC + Sij(t)gl)QC,RC- (53)

The first order quantities for the non resonant condition are defined in (54)
and (55)

1
(p:| Unlpy)Nke = (h_-) &l exp (iwyt) — 1] (54)
Wj;
(1) 1 2
Sij(t)NRC = ( ')6 i L2 -2 CcOS (w,,t)] (55)
hw,-i

In contrast to Si]-(t)(gl)c here the well-known oscillatory behaviour of the time-
dependent perturbation theory is encountered [35-37].

In (56)~(58) the second order transfer quantities for ¢; = &, and ¢, # &, are derived;
for D the indices i and j must be exchanged

2

1 t o
(0:|Unlp))Rtnre = (ih) EilEjk J. dt' exp (iwpt')t (56)
0

1 \2
{pil UND'P;'}%):,NRC =|—) eaer{(iwpt) exp (iwpt) —exp (iwjt)+ 1] (57
hwik

1\
e ) 8,'2kb‘if{(wjkf)2
ik

Sij(t)gzi,NRC = (

+2[1—cos (wpt) — (wpt) sin (wpt)]}. (58)
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In the case of the non resonating transfer channel the element (i,j) of the
evolution operator is expressed via Eq. (59)
2

1 1
<Pil UNDIP}')%I){C,NRC = (_> Eikgki( ; >
ih Iy

« {(;i—) [exp (iwyt) — 1] (i(jj)[exp (o)~ 1]}. (59)

The probability of electron (hole) propagation for the NRC, NRC process is
given in (60)
2

1\ 1 1\°
Sii(t)gl)zc,NRc'—” (_) (“‘) 8?}&‘%1{(5) [2—2 cos (w;t)]
7i

h Wi

+ (wilk) (2—2 cos ()] - (i) (wi]k) [2—2 cos (wut)
—2 cos (wjt) +2 cos (wkjt)]}. (60)

(60) can be rearranged into (61) where the cos-functions with the same Bohr
frequencies (w;;, wy and wy;) are grouped together

1 2 1 2 Wi
O (2) (21) eter] (1-2)
S;i () Nre,NRC (h) (wkih> Ekek}{( Wik
(wkz)

x[2—2 cos (wt)J(w;) >+ (@,

[2 2 cos (w]kt)](w]k)

(wkz

e[ cos () i 61)

Using the 6(e) representation (62) for the trigonometric expressions, (60) can
be modified into Eq. (63)

2

_ h _ -2
8(e)= o [2—2 cos (et)](he) (62)
1 ;
Sii (O3 NRC,NRC = 2;'t (M) £ i;[( ::]]k) &(hw;;)
(wkt) (wki)2 )
(w,,) Shwp )+ ———( ) S(hwk,)] . (63)

A relation similar to (61) already has been derived by Ratner and Ondrechen [33].

The complete set of transfer channels for ¢; # ¢; is summarized in Eq. (64)

Sii (O ot nre1) = S (*)Nke+ Sij (O rRe.Nre+ S (1) ggZ,NRC +8;(1) gl)IC,NRC (64)
(ex =¢) (ex = &)
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The explanation of the various increments in (64) is straightforward; the first
term stands for the direct coupling under non resonant propagation conditions,
the second and third correspond to resonance between v, and p,|p; while the last
element refers to non resonant conditions between p;|p; and the transmitter
set vi.

4. The Transformation of the Canonical Fock Matrix into a Hubbard-Type
Transport Fockian

For the unitary transformation between the CMO representation (10) and the
HF representation (25) it is assumed that a closed shell HF determinant with
paired spins is given. We furthermore assume that reorganization effects in the
vicinity of the localized hole-state p; can be neglected, an approximation similar
to Koopmans’' theorem [38] in the field of photoelectron spectroscopy.
Refinements of this independent electron model due to relaxation and correlation
are introduced in the next section. The advantage of the present approach lies
in the fact that the closed shell orbitals can be used in the transformation steps.
Additionally the capability of the virtual MO space as transmitter set is neglected.

The intended reformulation of the HF problem from Eq. (10) into (25) can be
achieved by a series of transformations properly modified from a thematically
related approach developed by Heilbronner and Schmelzer [39].

In the first step the canonical molecular orbitals {A;} associated to F MO are

transformed into a set of localized orbitals {p1, p- : - - p~} and to the Fock operator
F™®© which is a full matrix (65). Possible choices for the transformation matrix
L connecting {A;} with {p;} are discussed below; often this selection is by no
means trivial

oce occ

Z gaia;+Y Y (eqaia;+eqa; a;) (65)

i#f

LMO _
F

(the associated one-particle basis {p;})

LA=p (66)
FLMO _ [ FOMOL T 67)

Within the LMO representation p; and p; with their associated diagonal Lagrange
multiplicators have the desired properties of the time-evoluting electron-hole
pair. Decoupling of p; and p, from F MO results in the decoupled Fockian (68)
schematically displayed in Scheme 2. The off-diagonal elements in row and
column i, j are set equal to zero.

oce occ occ
LMO

Fihpec = Z eaiai+ Y earax+ Y Y (ewarai+ena;ai). (68)
Z K=1 K=11=1
= k#i,j ik
k#Ljl#i,]
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LMO
F(i,i) dec

Scheme 2

The off-diagonal pattern of Fippec is just the “negative” of the &, distribution
in FPT, To determine F"'" the Fockian (68) is diagonalized. The eigenvectors
of Fihpec, Dy, transform the localized MO set {p;} into the mixed one-particle
representation {y;} (Eq. 69) and F"'" is obtained via the matrix transformation
(70)

y=Dyp (69)
F" =D,FM°D]. (70)

Egs. (67) and (70) can be unified in (71) leading to the transformation matrix
M connecting the diagonal CMO basis with the mixed one-electron basis of F*"

F" =D, LF*™V°L'D}, (71)
M= D,’jL (72)
F'T = MFM°M". (73)

The design of various other choices for the one-electron bases, the mounted
Hilbert spaces and the necessary transformations is explained in Appendix A.

The technical important step for the construction of F HT consists in the determi-
nation of the transformation matrix L. Only in a narrow class of molecules this
transformation can be performed by means of intrinsic localization routines [40]
that only depend on the selected HF SCF basis. Intrinsic localization procedures
have been developed by various authors [41-43]. In the case of the Edmiston—
Ruedenberg algorithm [41] e.g. the self-energy integrals (74) are maximized

occ

% ({p0p@]Hn1)612))) = maximum. (74)

i=1

Intrinsic localization routines cannot be applied in molecules with lone-pair
combinations, localized metal d orbitals and moieties with an uneven number
of AOs. As the Fockian of dimension N is identified by N(N —1)/2 independent
parameters (N parameters satisfy the energy spectrum, (N —1)/2 are used for
the representation of the eigenfunctions) it is always possible to restrict the
available degrees of freedom by external conditions. A constrained localization
procedure has been developed by Magnasco and Perico [44] accumulating the
orbital electron density in preselected regions of the molecule by means of the
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localization function P

2P =Y 2P,=maximum o €{occ} (75)
2P,=2%% CuoCuolusn (76)
Mmoo

The summation runs through the orbitals of a preselected set; P, is the local
orbital population, x4 and » are AO indices, 0, the associated overlap integral
and ¢, ¢.o the usual LCAO coeflicients. Various choices for P, in the case of
core orbitals, lone-pair and bonds are discussed in Ref. [44]. Metal 3d orbitals
are treated in the same way as core orbitals and lone-pairs.

In the present work we have combined the organizational simplicity of the
intrinsic Edmiston-Ruedenberg (ER) procedure with necessary restrictions
defined via external conditions according to Magnasco and Perico (MP) avoiding
the difficult complete implementation of the latter method in the case of large
MO spaces.

The coupled localization procedure (ER/MP) requires the selection of a subspace
{A;}mp out of the full canonical MO space where the external MP conditions are
applied for the accumulation of orbital density in preselected molecular domains.
In a subsequent step the whole MO set (prelocalized MO’s of the {A;}up space
and the remaining MO’s) is transformed by means of the ER procedure. It is
always checked that the domains of {A; }vp are conserved; both localization types
are applied alternatingly up to convergence.

5. The Influence of Relaxation and Correlation

In Sect. 3 it has been demonstrated that the probability of hole propagation is
critically influenced by resonating or non resonating transfer channels. In the
case of a molecule with identical centers forming the p;|p; pair the use of an
independent electron model always results in a resonating direct channel. Relaxa-
tion and correlation in the ith hole-domain on the other hand cause deviations
from the independent electron approach. To take into account these reorga-
nizational rearrangements in the evoluting states we make use a theoretical
method related to Slater’s transition state theory developed in the X, approx-
imation [45] and transferred to the transition operator method as LCAO
counterpart [46].

Reorganizational rearrangements for the ith prepared hole-state and the time-
dependent electron-state p; are considered by means of the A; potential (see
below)

&i(ty) = £:(tiq) + (1 — Sy (t.-1))A; (77)
gi(ty) = g;(ta—1) + Sy(t,—1)As (78)

(77) and (78) obey the rule of conservation of energy. At (S;;(0) = 0) the prepared
hole-state alone is influenced by the A; potential. With increasing time the
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reorganization in the p; domain is asymptotically reduced whiie a new A; potential
is created in the jth donor state.

For the determination of A; we have used a relation developed by Gopinathan
[47] connecting the reorganization A; with the self-energy of the p;th state

A= e pp |- (79)

Eg. (79) holds in the case of full electron (hole) localization. The proportionality
constant ¢; has been observed by means of sample calculations where A, is related

RELAXATION
MANY BODY
CORRECTION
TIME
EVOLUTION
RESONATING
SOLUTION TEOCKIAN | AND NON
_ RESONATING
CANON.|CAL HUBBARD TRANSFER
MO'S TYPE CHANNELS
TRANSFOR-
MATION :
CMO BASIS -
MIXED ONE-
ELECTRON
BASIS
EVALUATION DECOUPLING AND
OF M DIAGONALIZATION
- OF FLMO _, p
v
LOCALI - LOCALIZATION
ZATION L PROCEDURE
1) INTRINSIC

2) EXTERNAL

Fig. 2. Schematical interrelation between the various theoretical steps for the calculation of
intramolecular hole (electron) migration
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to a renormalized approximation of the self energy part in a Green’s function
approach [48] Z(w;)". 2(w;)*" contains deviations from the independent particle
energies g; due to relaxation and correlation. The renormalized S(w;)°" ansatz
has been developed by Cederbaum [49] for one-particle states in the outer
valence region

A= 2(wi)eff = 2(2)(0’1');':‘ +D4;. (80)

Egs. (79) and (80) can be unified for the determination of ¢; in some test
calculations which together with the known integrals in (79) can be used in (77)
and (78). Further details are given in Appendix B.

A generalization of Eq. (79) is formulated in Eq. (81) where the k parameter
allows the modification of the initially prepared reorganization energies at z =0
in the ith hole domain

1

Fi2

8= (1= B p )| =0 (Da ). 81)
In the limit £ =1 an independent electron model is realized. With reduced k&
values reorganizational rearrangements in the evoluting states are taken into
account. If k =0 the ith hole-domain is completely reorganized. By means of
(79) and (81) therefore it is possible to go beyond the HF picture in the treatment
of electron (hole) propagation; the use of the A; potential offers an opportunity
to study the time evolution based on an approximation of Eq. (18).

In Fig. 2 the necessary theoretical steps for the intramolecular electron (hole)
propagation problem are summarized. Starting point are the canonical MO’s of
an ordinary HF SCF calculation. The CMO representation is connected via the
matrix M to the Fockian of the Hubbard type. The selection of the localization
routine (L) is independent from the structure of F'''; the necessary decoupling
steps (D) depend on the investigated time-dependent problem. The A; corrections
are used directly in the equations for the various transfer channels.

6. The Canonical Representation of Bis(s7-pentadienyl)dinickel

In Table 1 the canonical MO energies of 1 according to the INDO model are
summarized. The most important interactions between the Ni 34 orbitals and
the ligand = functions are displayed in Fig. 3. Atomic populations and net
charges [50] as well as Wiberg bond indices [51] are collected in Tables 2 and 3.

The MO’s 1-4 are CC-o ligand functions with predominant C 2s character; 13,
18, 19 and 21 are o-ribbon orbitals with large C 2p amplitudes. 5-12, 14-16,
20, 22 and 23 correspond to CH-o orbitals of the pentadienyl ligands.

For the MO’s 8a,, 8b,, 7a,, 9a, and 8a, Ni 3d contributions larger than 95%
are predicted. These orbitals correspond to in-phase and out-of-phase combina-
tions of the Ni 3d AO’s 3d,2, 3d,2.,2 and 3d,, (in-phase only). Significant
interactions between 3d,. and 3d,, and ligand 7 functions are predicted. Table
1indicates that the metal ligand coupling via 3d., exceeds the interaction via 3d,.,.
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Table 1. Canonical molecular orbitals of bis(7-pentadienyl)dinickel 1 according to an INDO calcula-
tion. The orbital energies, ¢, are given in eV. The Ni, the pentadienyl ligand carbon and hydrogen
contribution, the type as well as the irreducible representation (I';) of the MO wave function are
indicated. The numbering scheme of the I'; values corresponds to the valence-electron distribution,
the core electrons are not explicitly taken into account. MLI symbolizes the metal ligand interaction;
B is a bonding and AB an antibonding coupling. FI symbolizes the fragment interaction (Ni;Ni,
coupling, interaction between the pentadienyl ligands); IP stands for an in-phase relation while OP
symbolizes the out-of-phase interaction of the fragments. P = pentadienyl ligand

% % %
MO T, MO-type eieV) MLI FI* Ni  C(P)  H(P)
1 la, CC-a(s) ~41.31 24 829 147
2 1b, CC-o(s) ~39.80 21 834 145
3 la, CC-0(s) -36.78 19 800 181
4 b, CC-o(s) —34.59 08 822 170
5 2a, CH-o ~28.97 07 749 244
6 2b, CH-o —27.45 05 768 227
7 3b, CH-o -24.50 0.6 585 409
8  3a, CH-o -24.13 0.6 594 400
9 2a, CH-o -22.42 06 670 324
10 26, CH-o -21.73 05 628 367
11 3a, CH-o ~19.70 20 679 301
12 3b, CH-o -19.65 02 717 281
13 da, CC-a(p) -17.13 12 850 138
14 4b, CH-o -16.91 1.0 777 213
15 Sa, CH-0, 3d,, ~16.15 B 64 657 219
16 5b, CH-o - ~15.79 27 598 375
17 6a, CC-m(m1), 3d,, 1479 B IP 64 781 155
18 4a, CC-0(p), 3d,, ~14.35 B 58 737 205
19 4b, CC-o(p) ~14.25 23 800 177
20 5b, CH-0, 3d,, -13.73 B 86 638 276
21 Sa, CC-o(p), 3d,, ~13.66 B 53 792 155
22 Ta, CH-o,3d,, ~13.53 B 70 590 340
23 6b, CH-o ~13.42 06 654 340
24 6a, CC-m(m2), 3d,, ~13.16 B IP 252 647 101
25 b, CC-m (1) ~12.75 OP 25 955 2.0
26 6b, 3d,,, CC-m(3) ~11.55 B OP 486 5l1 0.3
27 8a, 3de_ ~11.46 IP 973 24 0.3
28 8b, 3d,, ~11.45 IP 959 3.8 0.3
29 7a, 3de_ 2 , ~11.42 OP 97.1 2.7 02
30 9a, 3d,2 ~11.40 P 97.0 2.0 1.0
31 8a, 3d,2 ~11.37 OP 976 1.6 0.8
32 7b, 3d,,/3d,,, CC-m () ~11.37 AB OP 725 259 1.6
33 9p, 3d,,, CC~m(ms) ~11.21 B IP 555 433 12
34 10a, 3d,,,, CC-m(my) -10.61 AB IP 799 179 22
35 9a, 3d,,, CC-m () -10.22 AB OP 626 358 1.6
36 8b, 3d,,, CC-mr () -8.89 AB OP 551 437 12
37 1la, CC-m(m3) -8.73 P07 991 02

?The symbol (IP/OP) in the Fl-column always corresponds to the fragment interaction which
contributes predominantly to the MO’s.
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Fig. 3. Interaction diagram between the Ni 3d orbitals of the Ni;Ni, moiety and the m-orbitals of
the pentadienyl ligands; the 3d orbitals of the Ni centers are split due to the interaction with the
o-frame of the ligands. IP = in-phase, OP = out-of-phase

This difference is rationalized on the basis of the Ni 3d populations in Table 2
and the bond indices in Table 3. Large Ni AO populations are predicted for
3d.2, 3d,>-,2, 3d,, and 3d,, (1.9¢) while the 3d,, population is significantly
reduced (1.6e). The NiNi bond index of Table 3 shows that the direct coupling
between the 3d centers is only of minor importance. The bond indices in the
pentadienyl framework predict a remarkable bond localization in the region of
the terminal C atoms (C;C; and C,Cs); this is also seen in the charge accumulation
between these centers.

The INDO results collected in Tables 1-3 suggest the following decoupling of
Ni 3d states for the investigation of an intramolecular hole transfer: 3d.2, 3d,>_,>,
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Table 3. Wiberg bond indices for bis(m-pentadienyl)- ‘ ]
dinickel 1 according to an INDO calculation Bond . Bond index

Ni; Ni, 0.0891
Ni; C;==Ni,Cs 0.2483
Ni; C,—Ni,Cy 0.1097
Ni; C3—=Ni,C; 0.1457

C,C=C,C;s 1.5817
C,C3=C5C,y 1.2289
C1C3—'—:C3C5 0.0212
C,Cy 0.0053

3d,, and 3d,,. Due to the strong interaction between the Ni 3d,, AOs and the
7 functions of the ligands the decoupling of these 3d functions is without any
significance; the Ni3d,, AOs are used for the formation of two localized five

O
EXDO

€O
OD D
O
OD OD

center bounds (see above). In the localized MO representation these two linear
combinations are forming the transition metal-carbon bonds. Localized 7 orbitals
should be constructed between the terminal carbon centers.

0
0
0

\/\/

The localization of CC-o and CH-o causes no problems. The remaining occupied
MO of 1 in a localized representation is a nonbonding 7 combination where
the interaction with Ni 34 is prevented due to symmetry.

CxD 5 )
2 @) CED
CD &0

It is clear that this localization pattern cannot be obtained by an intrinsic
localization procedure,

7. The Hubbard-Type Representation of Bis(w-pentadienyl)dinickel

In Table 4 the various types of localized orbitals of 1 together with the diagonal
Lagrange multiplicators and impurities from other atomic centers are collected.
The ligand CC-o and CH-o orbitals are strongly localized; this is also found
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Table 4. Localized molecular orbitals of bis(s-pentadienyl)dinickel 1. Type,
number and localization properties of the localized MO’s are also indicated.
The diagonal elements £iMO are given in eV

MO-Type sE-“MO Number Impurities %
CC-0(CyC=C3Cy) —24.12 4 0.7
CC-o(C1C=C,Cs) —24.04 4 1.1
CH-0(C3Hy) -21.16 2 0.9
CH-o(C{H,=CsHg) —21.09 4 1.0
CH-U(C1H2=C5H7) -20.91 4 0.3
CH-0(C;H;=C4H5) —20.86 4 0.4
CC-7(C1C,=C,4Cs) -12.30 4 8.7
Ni 3d,2 -11.51 2 0.1
Ni 3d,, -11.48 2 1.4
Ni 3d,2_,2 -11.45 2 4.1
Ni 3d,, —11.44 2 2.7
nonbonding #-MO -11.05 1 18.1

delocalized, in-phase
Ni;3d,,-C,C3=Ni,3d,,-C;Cs  —10.86

[\)

10.5

for Ni 3d,2, 3d,2_,> and 3d,, functions. The impurities in most of the localized
MO’s are less than 1%. The = functions in the p; representation show surprisingly
pronounced localization properties (8.7 % impurities). Similar impurity contribu-
tions are predicted for the two localized Ni carbon multicenter bonds.

In Tables 5 and 6 the diagonal elements as well as the coupling terms of the
Hubbard-type Fockian are summarized; the theoretical transformations have
been discussed in Sect. 4. Always two Ni 3d AOs (localized) were decoupled.
In Table 5 the interaction elements for eight localized p; states with the remaining
29 symmetryadapted (pointgroup C,;) time-independent messenger orbitals are
displayed. The descent of the y; subspace from the canonical representation
(Table 1) is clearly recognized. Negligible energy shifts are found in those ligand
combinations where only small Ni 3d contributions were concerned in the CMO’s.

None of the Ni 3d ligand interaction elements (“‘transfer integrals’) exceeds
1 eV, most of the cross-elements are significantly smaller. For the decoupled
3d,> set remarkable interaction constants with CC-o (MO 1 and 3) and CH-o
(MO 8, 12 and 15) messenger states are predicted. The interaction terms with
ligand 7 combinations are less than 0.1 eV. In the case of the two localized 3d,,
orbitals the most pronounced off-diagonal elements are calculated.

It is seen that all types of ligand messenger states (CC-7r, CC-o and CH-o) are
effectively coupled to the transition metal AOs, the transfer determining factor
therefore is the magnitude of the Bohr frequencies. The smallest Ni 34 ligand
coupling elements are predicted for 3d,2_,2 and 3d,,.

In Table 6 the direct interaction elements between the Ni centers are summarized
(“through space” coupling). These elements are small in comparison to the
various nickel pentadienyl interaction constants. Nevertheless a graduation
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Table 6. Coupling constants between the 3d AOs

of the two Ni centers in bis(m-pentadienyl)dinickel AO-Pair Coupling constant
according to an INDO calculation; all values in em

3d,» 89

3d,, 90

3d,2_2 197

3d,, 243

within the “through space” parameters is realized. The largest direct coupling
elements are calculated for 3d,>_,2 and 34,, which have their maximum AQO
amplitudes in the region of the NiNi distance vector (o and 7 interaction). A
significant reduction is found for the § pairs (3d,2 and 3d,,). The “through space”
integrals for the coupling between Ni 34 functions of different angular quantum

number are less than 10 cm™*.

8. The Time Evolution of an Initially Prepared Ni 34 Hole-State

The matrix elements summarized in Tables 5 and 6 were used for the investigation
of the time evolution of an initially prepared hole-state (Ni;). The probability
of hole propagation between the following instationary electron-hole pairs have
been studied:

(Hole-State ), > (Electron-State),

(3d.2); »  @Bd:) (82)
(3d2-y2) - (3d:>-,2)2 (83)
(Bdxy) > (3dy) (84)
(Bdy2) > (3dy) (85)
(3d.2): - (3d,2-y2); (86)
(3d.2) > (3dy) (87)
(3d.2); > (Bdy) (88)
(3d,.)1 > (3de,2) (89)
(3d,:) > (3dy) (90)
(3dy2-y2)1 > (Bdy) 91)

Characteristic times of localization of the initially prepared hole-state are given
in Table 7. An independent electron model has been assumed (k =1 in Eq.
(81)). This means that an unreorganized vacancy at Ni; has been prepared. In
the fourth column of Table 7 T_so for the processes (82)-(91) is given; this is
the time necessary for the hole equibrilation between the time-dependent evolut-
ing states localized at the Ni centers. With exception of the transfer process (88)
T.s0 spans a range between 3.56 - 107" sec (85) to 1.41-10 *sec (86) and
1.45-10 P sec (91). Even in the independent electron model an interval for



480 M. C. B6hm

Table 7. Times of hole propugation for Ni 3d hole-states; in wwe nrst column the transfer process
for the hole migration is given. T, ,, means that the localized hole-state at Ni; has been compensated
by n% due to the electron-state of Ni, for a given electron-hole pair (e.g. T, 10 =hole amplitude at
Ni; is reduced by 10%). The times of hole propagation were observed in the framework of an
independent electron model, the one-electron energies of the electron- and hole-state are the same.
T, . in sec

(AO); > (AO), Te10 T30 T.so

1 (3d,2),~>(3d2), 3.05-107° 530-107"°  6.85-107"

2 (3d2 2> (3dy2,2), 1.86-107"°  325-107%  418.107"

3 (3dey)1> (3dy): 1.62:107%  281-107"°  3.60-107"

4 (3dy.)1~> (3d,.)2 1.57-107% 276107 3.56-107'°

5 (3d2),>(3d>2-,2), 6.58-107"°  1.02-107%  141.107%

6  (3d.9~>(3d,,)2 176107 2.59-107"°  322.107%

7 (3421 (3dyy)2 ?

8 (3d,.):1~>(3d,2,2), 9.68-107'  1.31-107"°  1.50-107*°

9 (3d,.);~ (3dy,)» 227-107"%  351-100"%  4.33.107"
10 (3de 21~ (3dy)s 493.-107"* 839107  145.107%

? Transfer probability too small that the hole migration takes place under adiabatical conditions.

the different equibrilation times of 10> is predicted. Within the selected model
(unreorganized hole-domain) the fast transfer events do not couple with
molecular phonons. In the limit of the slow hole migrations (750> 10""*sec)
the Frohlich interaction cannot be neglected. Here the possibility of nonadiabati-
cal transfer events and a potential breakdown of the Born—Oppenheimer approxi-
mation must be taken into account.

The hole-propagation (88) is an exception in the studied series as the “tunnel
integrals” are too small to allow hole tunneling on the adiabatical surface by
purely electronic effects. In Fig. 4 the probability of hole propagation for this
(88) electron-hole pair is displayed; S;(¢) is plotted for a time interval of 800 au
(atomic units, 1au=1.94-10""*sec). S;;(¢) does not exceed 6.0 - 107>, The
coupling elements in Table 5 indicate that there is no ligand messenger state
that interacts significantly both with the hole- and particle-component of the

pilp; pair.

The calculated T, parameters of Table 7 should be compared with lifetimes of
instationary localized states in other molecules (theoretical models based on an
independent electron picture). In organic molecules lifetimes of #- and o-
vacancies of 107"® sec have been calculated [52]. The core-hole exchange in
acetylene requires 7 - 107" sec [53], the lifetimes of K-states in Ar and C amount
1.3-10" " sec[54] and 1.3 - 10~ ** sec respectively [55].

In Tables 8-16 the contributions from the individual transfer channels for
(82)—(91) are summarized.

The hole propagation in the case of the (3d,2)1/(3d.2), pair is predominantly
submitted via CH-o orbitals; 92.7% of the net probability of hole propagation
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Fig. 4. Probability of hole propagation for the electron-hole pair (3d,2); (hole-state)- (3d,,),

(electron-state)

Table 8. Transfer channels for the (3d,2){/(3d,2),

electron-hole pair

Messenger MO MO-Type  Contribution %,
1 CC-o 0.8
3 CC-o 1.6
8 CH-o 10.1

12 CH-o 70.4

13 CC-o 0.4

15 CH-o 12.2

17 CC-m 0.1

18 CC-o 0.4

25 CC-7 1.4

direct (3d,2), 2.6

Transfer channel

Contribution %

CC-o
CH-o

o total
CC-w
ligand total
direct

32
92.7
95.5

1.5
97.4

2.6
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Table 9. Transfer channels for the (3d,2_,2)1/(3d,2_,?)»
electron-hole pair

Messenger MO MO-Type  Contribution %

8 CH-o 1.0
9 CH-o 2.7
13 CC-o 1.0
15 CH-o 0.1
18 CC-o 0.7
23 CH-o 5.2
25 CC-m 84.4
direct (3dy2_y2), 49
Transfer channel Contribution %
CC-o 1.7
CH-o 9.0
o total 10.7
CC-m 84.4
ligand total 95.1
direct 49

Table 10. Transfer channels for the (3d,,)1/(3d,,)2
electron-hole pair

Messenger MO MO-Type Contribution %
11 CH-o 0.2
14 CH-o 35
16 CH-o 0.2
19 CC-o 1.4
20 CC-o 04
24 CC-m 0.2
30 CC-7 65.8
35 (3d,,, CC-7) 0.1
36 (3d,,, CC-7r) 228
direct (3dyy)2 5.5
Transfer channel Contribution %
CC-o 1.7

CH-o 3.9

o total 5.6

CC-m 66.0
CC-n/3d,. 22.9

ligand total 94.5

direct 5.5
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Table 11. Transfer channels for the (3d,.):/(3d,.),
electron-hole pair

Messenger MO MO-Type  Contribution %

1 CC-o 0.1

3 CC-a 0.1
15 CH-o 0.8
17 CC-m 1.2
23 CH-o 32
25 CC-7 94.6
direct (3d,.)2 <0.1
Transfer channel Contribution %
CC-o 0.2
CH-o 4.0
o total 4.2
CC-7 95.8
ligand total 100.0
direct <0.1

Table 12. Transfer channel for the (3d,2),/(3d,2_,2),
electron-hole pair

Messenger MO MO-Type  Contribution %

3 CC-o 0.4

8 CH-o 18.5
13 CC-o 3.6
15 CH-o 5.0
18 CC-o 3.1
23 CH-o 0.2
25 CC-m 69.2
direct (3d,2_,2),  <0.1
Transfer channel Contribution %
CC-o 7.1
CH-o 23.7
o total 30.8
CC-m 69.2
ligand total 100.0

direct <0.1
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Table 13. Transfer channels for the (3d,2);/(34d,,),

electron-hole pair

Messenger MO

MO-Type  Contribution %

1
3
12
13
15
17
18
23
25
direct

CC-o 1.0
CC-o 1.4
CH-o 7.7
CC-o 0.2
CH-o 14.0
CC-7 1.6
CC-o 0.4
CH-o 0.1
CC-7 73.6
(3d,.)2 <0.1

Transfer channel

Contribution %

CC-o
CH-o

o total
CC-7
ligand total
direct

3.0
21.8
24.8
75.2

100.0
<0.1

Table 14. Transfer channels for the (3d,.)1/(3d,2-,?),

electron-hole pair

Messenger MO MO-Type Contribution %
9 CH-o 0.2

13 CC-o 0.1

15 CH-o 0.3

18 CC-o 0.2

23 CH-o 7.3

25 CC-m 91.9

direct . (3d,2.,»), <0.01

Transfer channel

Contribution %

CC-o
CH-o

o total
CC-7r
ligand total
direct

0.3
7.8
8.1
91.9
100.0
<0.01

M. C. B6hm
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are due to these ligand MOs. CC-o functions, 7 orbitals and the direct channel
contribute with 3.2, 1, 5 and 2.6% to the transfer process.

The time evolution of the remaining electron-hole pairs profits in the first place
from ligand = orbitals as messenger states. In the (3d,2_,2) pair 84.4% of the
net probability of hole propagation is due to pentadienyl = combinations. In
any case small contributions from the direct interaction between the Ni centers,
compared to the indirect coupling, are obtained.

A significant hole redistribution at the Ni centers is predicted for the evoluting
pairs (3d,,)1/(3d,,), and (3d,2_,2);/(3d,,).. Here an important contribution to
the net probability of hole propagation is due to the channel (3d,., CC-7); the
first step in the transfer therefore is an intraatomic redistribution of the hole-
density [electron-density in (91)] from the 3d,, AO into 34, strongly coupled
to the 7 system of the organic ligands.

The = contribution to the transfer process is largest for the (3d,,)1/(3d,.):
electron-hole pair (95.8%). Significant ligand ¢ contributions (CH-o) in addition
to the (3d,2) pair are encountered in the two mixed transfer events (86) and
(87) where the prepared hole-state corresponds to the (3d,2); AO.

Table 15. Transfer channels for the (3d,,);/(3d.y)s
electron-hole pair

Messenger MO MO-Type Contribution %
1 CC-o 0.1
15 CH-o 1.2
17 CC-7 5.7
19 CC-o 0.2
23 CH-o 0.7
25 CC-m 1.8
30 CC-w 88.3
36 (3d,,, CC-7) 0.5
37 CC-7 1.5
direct (3dyy)2 <0.1
Transfer channel Contribution %
CC-o 0.3
CH-o 1.9
o total 2.2
CC-7 97.3
CC-7/3d,, 0.5
ligand total 100.0

direct <0.1
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Table 16. Transfer channels for the (3d,2_,2)1/(3d,,)2
electron hole pair

Messenger MO MO-Type  Contribution %

5 CH-o 0.2

8 CH-o 1.0

9 CH-o 0.2
13 CC-o 0.1
15 CH-o 0.8
17 CC-7r 0.1
23 CH-o 2.3
24 CC-m 1.1
25 CC-m 4.2
30 CC-7 69.6
35 3d,,, CC-m) 0.1
36 (3d,,, CC-m) 19.9
37 CC-7 0.4
direct (3d,y)2 <0.1
Transfer channel Contribution %
CC-o 0.1
CH-o 4.5
o total 4.6
CC-#w 75.4
CC-#/3d,, 20.0
ligand total 100.0
direct <0.1

Table 17. Times of hole propagation for the (3d,2):/(3d,2), electron-hole
pair as function of the reorganizational strength parameter (1 — k). See legend
Table 7

(1 - k) TC.IO Tc.30 TC.SO

0.000 3.05-107% 5301071 6.85-1071°
0.010 3.07-107%° 532-107%° 6.89-107%°
0.025 3.12-107% 5.35-107% 6.92-107"
0.050 3.19.107% 5.39.107%° 6.92-107"°
0.075 327-107" 552-107% 6.97-107%
0.100 3.39-107%° 5.83-107% 6.92-107%
0.125 3.82-107% 6.27-1071° 6.94-1071°
0.150 2

? The transfer probability is too small that the migration takes place under
adiabatical conditions.
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. direct ( Ni;/Ni) cc-mw

Fig. 5. Fragmentation into the individual transfer channels (direct, CC-o, CH-¢, CC-7 and CC-
m/3d,.) for the nine possible combinations of electron-hole pairs leading to a purely electronical
transfer probability

In Fig. 5 the different transfer channels for the calculated electron-hole combina-
tions are summarized schematically. The most important messenger states are
displayed in Fig. 6. The MOs 8, 12 and 15 are CH-o combinations, 25 and 26
ligand 7 functions and 36 the delocalized linear combination of the Ni 3d,,
carbon multicenter bonds; this messenger orbital requires the intraatomic hole-
reorganization at the Ni sides.

In Table 17 the variation of the T, parameters of the (3d,2);/(3d,2), electron-
hole pair is shown if the ith hole-domain is modified due to reorganizational
rearrangements. (1—k) in Eq. (81) is a measure of the deviation from a Koop-
mans’ analogue approximation. The T, parameters are enlarged with increasing
(1—k) values. Up to (1 - k) =0.125 only small variations are predicted. If (1 —k)
is enlarged furthermore, the probability of hole propagation is too small that a
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Fig. 6. Schematical representation of the most important messenger orbitals of the pentadieny! ligands

transfer event is possible on the adiabatic surface by purely electronical effects;
the coupling to molecular vibrations is the necessary condition for the hopping
event.

In Fig. 7 the probability of hole propagation for the (3d,2) pair is displayed for
reorganizational strength parameters (1 — k) of 0.125 and 0.100. Both probability
amplitudes are comparable up to a time interval to 10 au. For the amplitude
with the 0.125 factor than an oscillatory behaviour is calculated (maximum of
S;;(1)=0.10). On the other side the transfer event closer to the independent
electron limit allows the hole-propagation by purely electronic effects. In Fig. 8
the oscillation of S;{¢) for a (1 — k) value of 0.5 is shown; the transfer probability
is reduced furthermore.

With increasing reorganization in the ith hole-domain the probability of hole
propagation is reduced, the transfer times are enlarged. At a critical value of
the reorganization strength parameter the electron (hole) propagation becomes
impossible by purely electronic effects. Here only the vibrational components
of the Hamiltonian (H,, H.;.,) allow the hopping event.

9, Conclusion

The purely electronical aspects of electron (hole) propagation in the binuclear
Ni complex 1 have been investigated. A Fock operator of the Hubbard-type is
constructed from first principles starting from the canonical molecular orbitals
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Fig. 7. Probability of hole propagation for the electron-hole pair (3d,2); - (3d.2), as function of the
reorganization strength (1—k)
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Fig. 8. Probability of hole propagation for the electron-hole pair (3d,2); > (3d,2), with a strength
parameter 0.50 for hole-reorganizations

of an ordinary HF calculation; the CMO’s are transformed into a one-electron
basis suitable for the study of time-dependent phenomena. The transfer Fockian
allows the study of electron (hole) propagation of the HF SCF level.
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By means of the A; potential it is possible to mimic reorganizational rearrange-
ments in the ith hole-domain and thus to modify the initial conditions for the
transfer process. In the present model the time-evoluting electron-hole pair is
dynamically coupled by means of the A; potential. The computational results
obtained for 1 have shown that the probability of electron (hole) migration
depends critically on the initially prepared conditions in the instationary hole-
domain. The predicted transfer times span a wide range from fast processes that
are not coupled to molecular phonons to the limit where the electronic tunnel
probability is too small to allow a transfer event. In these cases an extended
theoretical treatment under the inclusion of the vibrational motions is necessary
that conserves the methodical careness of the electronic aspects discussed in the
present work.

Appendix A

In this appendix two important choices for suitable one-electron bases, Hilpert
spaces mounted to these bases as well as the associated transfer-type Fock
operators are presented. Additionally the probability amplitudes and the prob-
abilities of hole propagation are given. The necessary Fock matrices are displayed
schematically, their formulation exactly parallels the steps discussed in Sects. 2
and 4,

(a) Initial condition: hole-state localized at p;, hole propagation into the
instationary donor states p; and p,. (irreversible ansatz).

pi (hole-state)
active / \ irreversible probability
states of hole-propagation
o; P (electron-states)
messenger states (N —3): y, (I#1,],k)
Time-dependent one-electron basis:
lbo(t)) = Alpi(1, 1)p;(2, Dpi(3, )y1(4) - * + yow—3 (N} (A1)
Hilbert space: LY (t)=Li{(t)+L;(1)+ L () + L™ 7. (A2)
Decoupled localized Fockian F{;}oae.: Transfer Fockianof the Hubbard-type:

i i k

=~

Scheme 3 Scheme 4
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Probability of hole propagation:
Sy(6) = Uyl (A3)
Sac(8) =|Usc[”. (A4)
Probability amplitude P;(t):
Pi(8) =|Uy[*P;(0) +|Ual*Pi (0)
= S;i(0)P,(0) + Si (1) P (0). (AS)
In (AS) the RPA has been used.

(b) Initial condition: hole-state localized at p;, transfer (direct) to p; and to py,
secondary hole propagation from p; to py; all steps are irreversible.

o (hole-state)
active irreversible probability
states of hole-propagation
P — Pk (electron-states)

messenger states (N —3): v, (U#1L], k).

The time-dependent one-electron basis, the mounted Hilbert space as well as
F ﬁ}}?,gm and FH7 correspond to (a).

Probability of hole propagation:

(1) =|Uyl* (A6)

Si (1) =| U (A7)

Sie(t) = | U |*. (A8)
Probability amplitudes P;(¢) and P;(¢):

Pi(t) = 8;(t)P;(0) + Sy (1) P (0) (A9)

Py(t) = P;(0)+ S ()P (0) — S () P;(0). (A10)

Appendix B

For the determination of ¢; in Eq. (79) we performed a series of perturbational
calculations according to Eq. (80) to determine reorganizational increments A,
for electron removal. In the case of strongly localized MOs A; is proportional
to the fourth power of the LCAO coefficient of the AOs forming the localized
domain in the ith one-electron state. Extrapolation to the full localized limit
allows the calculation of c; in (79).

The one-center self-energy terms must be determined in a way that the design
of the molecular Hamiltonian is properly taken into account (ab initio vs.
semiempirical procedure). In the case of the used INDO approximation [16]
experimental one-center integrals of Sichel and Whitehead [56] and DiSipio and
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coworkers [57] (3d centers) represent this suitable choice. In the present work
¢; =0.22 has been determined.

Eq. (79) only holds if a single atomic orbital p; is forming the ith localized domain
(3d AQO, lone-pair). In the case of decoupled bonds or even more delocalized
fragments (79) must be substituted by Eqgs. (B1) or (B2).

Decoupled bond

with the AOs As = il hifun + Cotfon)- (B1)
@, and @, in p;

Molecular fragment

with n decoupled As = ci(Coifun + Cuif ++ + + Coif) (B2)
AOs ¢, in p;

= (0 00|

eu (D). (B3)

In the case of (79) obviously the identity (B4) is true
pi(1) = @i(1). (B4)

cui is the uth AO coefficient in the ith decoupled localized domain. It is clearly
seen that the calculated A; potentials are reduced with increasing delocalization
of DPi.
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